NED UNIVERSITY OF ENGINEERING & TECHNOLOGY, KARACHI FIRST YEAR (COMPUTER SCIENCE AND INFORMATION TECHNOLOGY/

MATERIALS ENGINEERING) ANNUAL EXAMINATION 2008 BATCH 2007-08

Time: 3 Hours

Dated: 11-10-2008

(5/5)

(6/7)

(4/4)

P.T.0

Max. Marks: 75/80

APPLIED PHYSICS- (MS-121)

	Instr	2. All questions carry equal marks.	
INST	TRUC	CTIONS	
Steamen	CAPACIDA SALINA DA LA MANAGA CANAGA	five questions in All.	
	-	stions carry equal marks.	
11) 1 1	ir que	strono cari, oquar market	
Q#1	(a)	(i) Can an object accelerate if its speed is constant?(ii) Can an object accelerate if its velocity is constant?	(3/3)
	(b)	Define uniform circular motion? Drive the relation of centripetal acceleration?	(7/8)
	(c)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	(5/5)
		i) How far does the particle moves before turning around?ii) At what time does it turn around.	
		II) At what time does it tain around.	
Q#2	(a)	State the following. (i) Angular momentum, (ii) Kinematics	(4/4)
	(b)	State & prove that work energy theorem for non constant forces.	(7/8)
	(c)	The coefficient of static friction between tires of a car & a dry road is 0.62. The mass of the car is 1500Kg, what maximum braking force is obtainable.	(4/4)
		i) On a level road ii) On 8.6° down grade	
Q#3	(a)	i) If a charge practical moves in a straight line through some region of space? Can you say that the magnetic field in that region is zero? ii) Find the electric field 40 cm from a charge of 7 x 10 ⁻⁵ C.	(4/4)
	(b)	Find the electric field due to an infinite line of charge with uniform charge per unit length using Gauss's law.	(6/7)
	(c)		(5/5)
0#4	(a)	Define the following.	

ii)Magnetic Intensity.

A wire carries a current of 22A from east to west. Assume that at this

location the magnetic field of the earth is horizontal directed from

south to north & it has a magnitude of 0.5x10-4T. Find the magnetic

Explain paramagnetic substance and Ferro-magnetic substance?

i) Coulomb's Law

force on a 36 m length of wire.

(b)

(c)

Q#5	(a) (b)	What does LASER stand for? Discuss the characteristics of LASER. If $F = 3xyi - y^2j$. Evaluate $\int c$ F. dr where C is the curve in xy plane,	(5/6) (5/5)
	(c)	$y=2X^2$ from (0,0) to (1,2). If $\phi(x,y,z) = xy^2z \& A=xzi - xy^2j + yz^2k$.	(5/5)
		Find $\partial^3(\phi A)$ At point $(2, -1, 1)$.	
		$\partial x^2 \partial z$	•
Q#6	(a)	(i) Is the base region much thinner or much wider than the collector & emitter region in transistor.(ii) Which is the largest of the three transistor currents?	(4/4)
	(b)	Derive the relation b/w $\beta_{DC} \& \alpha_{DC}$?	(6/7)
	(c)	Explain the formation of depletion region?	(5/5)
Q#7	(a)	In photoelectric effect, explain why the photoelectric current depends on the intensity of the light & stopping potential depends on the frequency of the light but not on the intensity?	(5/5)
	(b)	An X – ray photon of wavelength 0.3Å is scattered through an angle 45° by a loosely bound electron. Find the wavelength of the scattered photon.	(5/5)
	(c)	A 2kg mass is set into a SHM on the end of the spring, with amplitude 30 cm. the period is 3sec.	(5/6)
		(i) Find the total energy of the spring mass system? (ii) What is the speed of the mass when it is 20cm form equilibrium?	
Q#8	(a)	Under what circumstances does a nucleus emit an electron & a positron?	(4/4)
	(b)	What is Half Life? Find out the relation between Half Life and Decay constant?	(7/8)
	(c)	The activity of a certain radionuclide decreases to 15 % of its original value in 10 days. Find its half life.	(4/4)

Given Constant:

Planck's constant = $h = 6.63 \times 10^{-34} J$ Permittivity of free space = $\epsilon_0 = 8.85 \times 10^{-12} C^2/N.m^2$

and the second second

NED UNIVERSITY OF ENGINEERING & TECHNOLOGY, KARACHI FIRST YEAR (COMPUTER SCIENCE AND INFORMATION TECHNOLOGY)

ANNUAL EXAMINATION 2008 FOR REPEATERS

Time: 3 Hours

Find the value of curl curl F.

b)

Dated: 11-10-2008 Max. Marks: 80

APPLIED PHYSICS- (MS-154)

Instructions:

- 1. Attempt any **FIVE** questions.
- 2. All questions carry equal marks.
- what is vector Triple Product? Show that $\vec{A} \times (\vec{B} \times \vec{C}) = (\vec{A} \cdot \vec{C}) \vec{B} (\vec{A} \cdot \vec{B}) \vec{C}$. b) Evaluate grad ϕ if $\phi = \ln |\vec{r}|$
- c) Show that $\nabla r^n = nr^{n-2}\vec{r}$
- a) Define "Line Integral of a vector"
 - c) If a particle is moving under the influence of force $F = 3x^2 \hat{i} + (2xz y) \hat{j} + z\hat{k} \text{ find the workdone } \int F.dr$
 - Where c is straight line from P_1 (0, 0, 0) to P_2 (2, 1, 3).
 - a) What is simple Harmonic Oscillator, what are the conditions and characteristics of S.H.M.
 - b) Prove that the motion of the body executing S.H.M in Mass Spring "Longitudinal Oscillation". Also obtain the expression for velocity and Acceleration in this case.
 - c) An oscillator while oscillating simple harmonically have velocities U_1 and U_2 and distances x_1 and x_2 from the equilibrium positions respectively, show that its frequency

$$\upsilon = \sqrt{\frac{{U_1}^2 - {U_2}^2}{{x_2}^2 - {x_f}^2}}$$

- a) What are x-rays and how are they produced? explain the Properties and application of x-rays.
- b) When the pot. difference between the electrodes of an x-rays tube is increased there take place an increase in the a) Intensity b) frequency c) Wavelength d) speed of the x-rays emitted.
- c) Calculate the energy in electron volt and velocity of electron beam giving rise to x-rays of wavelength 1 \dot{A}
- 2.5a) Define Thermal electricity, Thermocouple and Contact potential
 - b) Distinguish between seeback and peltier effect. How would you find the value of peltier coefficient.
 - c) A current of 10 amp flows through a wire of 1mm² cross section, if the density of charge carriers in the wire is 10²⁷ /m³ find the average drift velocity of the electron.

P.T.O

10

2

- Q.6
 - a) Define Binding Energy? What do you know about the Nuclear forces?
 - b) Explain the phenomenon of Nuclear Fission?
 - c) What is "Nuclear Reactor", explain its essential components?
- Q.7
 - a) What if Laser, Define i) Meta stable state ii) spontaneous and stimulated emission?
 - b) What are the requirements for Laser action, Explain?
 - c) Give any two applications of Laser?
- Q.8
 - a) Explain photoelectric effect. Derive Einstein's photoelectric equation.
 - b) Briefly outline two application of photoelectric effect in the modern life.
 - When violet light of $\lambda = 4000 \dot{A}$ strikes the cathode of a photocell a retarding potential of 0.4V is required to stop emission of electrons calculate.
 - (i) Light frequency (ii) Photon energy (iii) Work function (iv) threshold frequency and
 - (v) Net energy after the electron leaves the surface.

--X-