NED UNIVERSITY OF ENGINEERING & TECHNOLOGY, KARACHI FIRST YEAR (COMPUTER SCIENCE AND INFORMATION TECHNOLOGY)

ANNUAL EXAMINATION 2007 BATCH 2006-07

Time: 3 Hours

Dated: 18-10-2007

Max. Marks: 80

DIFFERENTIAL & INTEGRAL CALCULUS (MS-171)

Instructions:

1. Attempt any **FIVE** questions.

2. All questions carry equal marks.

Q1a): If
$$f(x) = \begin{cases} \frac{x^2 - 9}{x + 3}, & x \neq 3 \\ k, & x = 3 \end{cases}$$
 [4]

Find k so that $f(-3) = \lim_{x \to -3} f(x)$

b): Find the limit

[12]

i)
$$\lim_{x\to 1} (2-x)^{\tan[(\pi/2)x]}$$
 ii) $\lim_{x\to 0} (\cos ecx - 1/x)$ iii) $\lim_{x\to 0} \frac{e^x - 1}{\sin x}$

Q2: Sketch the graph by using x-intercept, y-intercept, intervals of increase and decrease, stationary points, concavity, inflection points and horizontal and vertical asymptotes. [16]

$$f(x) = \frac{x^2}{x^2 - 1}$$

Q3a): Drive the reduction formula for $\int \sin^n x dx$ and evaluate $\int \sin^8 dx$ by the formula. [8]

b): Compute
$$\int_{0}^{\frac{\pi}{2}} Cos^{12}xdx$$
 by using walli's formula

[8]

Q4a): Two roads intersect at right angles. Car A moving on one of the roads, approaches the intersection at 25km/hr and car B moving on the other road, approaches the intersection at 30km/hr. At what rate is the distance between the cars changing when A is 0.3km from the intersection and B is 0.4km from the intersection?

b): If
$$T = x^2y - xy^3 + 2$$
; $x = r\cos\theta$, $y = r\sin\theta$. Find $\frac{\partial T}{\partial r}$ and $\frac{\partial T}{\partial \theta}$ [5]

c): Let f be a differentiable function of three variables and suppose that w = f(x - y, y - z, z - x), then

show that
$$\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} = 0$$
 [5]

Q5a): If z = f(x, y) where $x = r \cos \theta$ and $y = r \sin \theta$ then show that

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$$
 [8]

- b): Find all relative maxima, relative minima and saddle point, if any $f(x,y) = x^2 + xy + y^2 3x$ [8]
- Q6a): For gama integral $\Gamma(x)$ prove that $\Gamma(1) = 1$ and $\Gamma(n+1) = n!$ [8]
 - b): By using Beta and Gama integrals find $\int_{0}^{\pi/4} \sin^4 2x \cos^6 2x dx$ [8]
- Q7a): Evaluate $\iint_R x(1+y^2)dA$; where R is the region in the first quadrant enclosed by $y=x^2, y=4$ and x=0 [8]
 - b): By the double integral find the area of the region enclosed by $y = \sin x$ and $y = \cos x$, for $0 \le x \le \frac{\pi}{4}$
- Q8a): If z_1, z_2 and z_3 are complex numbers then prove that $|z_1 + z_2| \le |z_1| + |z_2|$ [8]
- b): Find all the roots of the equation $x^7 + 1 = 0$ [8]

NED UNIVERSITY OF ENGINEERING & TECHNOLOGY, KARACHI FIRST YEAR (COMPUTER SCIENCE AND INFORMATION TECHNOLOGY)

ANNUAL EXAMINATION 2007 (FOR REPEATERS)

Time: 3 Hours

Dated: 18-10-2007

Max. Marks: 80

CALCULUS – (MS-156)

Do any five

Q1a) Find the 6th root of -1 + I &64i

[8]

b) Prove that $Cos^4\theta + Sin^4\theta = \frac{1}{4}(Cos4\theta + 3)$

Q2a): If z_1, z_2 and z_3 are complex numbers then prove that $|z_1 + z_2| \le |z_1| + |z_2|$

[8]

b): Find all the roots of the equation $x^7 + 1 = 0$

[8]

Q3): Find the limit

[16]

i)
$$\lim_{x \to 0} \frac{e^x - 1}{\sin x}$$
 ii) $\lim_{x \to 0} (e^x + x)^{1/x}$

iii) $\lim_{x\to 0} \frac{Sin2x}{Cos3x}$

iv) $\lim_{x\to 0} (\frac{1}{x} - \frac{1}{e^x - 1})$

Q4a):Integrate the following

 $Sin^n x dx$.

ii) $\int Co \sec^n x dx$ iv) $\int e^{-kt^n} dt$

[16]

Q5a): Find the arc length of $r = a(1 - Cos\theta)$; $0 < \theta < \pi$

[8]

[8]

b): Find all relative maxima, relative minima and saddle point, if any

 $f(x,y) = x^2 + y^2 + \frac{2}{xy}$

Q6a): State and prove the Leibnitz theorem

[8]

b): Find all asymtotes of $x^2y + y^2x = a^2$

[8]

Q7a): If $T = x^2y - xy^3 + 2$; $x = r\cos\theta$, $y = r\sin\theta$. Find $\frac{\partial T}{\partial r}$ [3]

b): Let f be a differentiable function of three variables and suppose that w = f(x - y, y - z, z - x), then

show that
$$\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} = 0$$

[5]

c): If z = f(x, y) where $x = r \cos \theta$ and $y = r \sin \theta$ then show that

$$\left(\frac{\partial z}{\partial x}\right)^2 + \left(\frac{\partial z}{\partial y}\right)^2 = \left(\frac{\partial z}{\partial r}\right)^2 + \frac{1}{r^2} \left(\frac{\partial z}{\partial \theta}\right)^2$$

Q8a): For gama integral $\Gamma(x)$ prove that $\Gamma(1) = 1$ and $\Gamma(n+1) = n!$

b): By using Beta and Gama integrals find $\int_0^4 \sin^4 2x \cos^6 2x dx$

[8]

[8]

[8]