NED UNIVERSITY OF ENGINEERING & TECHNOLOGY, KARACHI FIRST YEAR (COMPUTER SCIENCE AND INFORMATION TECHNOLOGY)

ANNUAL EXAMINATION 2007 BATCH 2006-07

Time: 3 Hours

Instructions

Q7(a)

Dated: 12-11-2007

Max. Marks: 80

[08]

ELECTRICAL TECHNOLOGY FUNDAMENTALS – (EE-115)

	empt any five questions, questions carry equal marks	
Q1(a)	Using the Voltage dividing Rule, determine voltages V_1, V_2 and V_3 for the series circuit of Fig #1. Hence prove that the circuit follows KVL Principle ie $E = \Sigma V$	[08]
Q1(b)	A portion of a residential service to a network is shown in Fig # 2 (i) Determine the current through each parallel branch of the network (ii) Calculate the current drawn from 120 V source. Will the 20A Circuit Breaker trip?	[08]
	(iii) What is the total resistance of the network?	FE 1920
	(iv) Determine the Power supplied by 120 V source. How does it compare to the total power of the load?	
Q2(a)	Define Thevenin's Theorem. Describe and apply the rules to find the Thevenin Equivalent circuit for Fig # 3.	[08]
Q2(b)	Write the mesh equations for the circuit of Fig # 4. & Solve for the branch current through resistor R ₃ .	[08]
Q3(a)	Apply Superposition Theorem to Fig # 5 to find current I ₂ through 12 KΩ resistor	[08]
Q3(b)	Write the nodal equations for the circuit of fig # 6 & using determinants solve for the nodal voltages.	[80]
Q4(a)	Define frequency response? Discuss the frequency response for the basic circuit elements R, L and C.	[80]
Q4(b)	The voltage across a 1 μ F capacitor is given below. Write down the sinusoidal expression for the current? Also sketch the curve between ν & i.	[08]
	(i) $v = 20\sin 400t$ (ii) $v = 30\sin(400t-70^0)$.	,
Q5(a)	Find the average value of the periodic waveforms shown in Fig # 7	[08]
Q5(b)	Discuss the Importance of Electrical Technology to the Modern World.	[08]
Q6(a)	Using Voltage Dividing Rule, find the unknown voltages v_R and v_I for	[07]
	the circuit of Fig # 9	[o,]
Q6(b)	For the network of Fig # 10	
	(i) Find the Admittance of each parallel branch	[09]
	(ii) Determine the input Admittance	
	(iii) Calculate the input Impedance	
	(iv) Draw the Admittance Diagram	

series magnetic circuit of Fig # 11

Find the value of i required to establish flux of $\varphi = 0.75 \times 10^{-4}$ wb in the

	Q7(b)	Discuss	*
		 (i) Ferromagnetic Materials (ii) Permeability and Permittivity (iii) Air Gap 	[80]
	Q8(a)	(iv) Fringing Effect Discuss the advantages and discussion	
	Q8(b)	Discuss the advantages and disadvantages of Permanent Magnet Moving Coil (PMMC) instruments.	[80]
71.1 ma 74645	Qo(D)	What are Instrument Transformers? Discuss.	[08]
	NN	M.SILlgweel'com	1 000

Fig # 11

